3 Dimensional Cellular Force Microscopy in Fibrin Gels
نویسندگان
چکیده
منابع مشابه
Cellular Biomechanics Investigated by Atomic Force Microscopy
Living biological cells are highly complex, multifunctional systems whose physical attributes are relatively unknown. Critical functions involving plasticity of cell morphology, connectivity and response to stimuli are proposed to be fundamentally related to the micromechanical character and the ability of the cell to exert directed mechanical signaling. Unique abilities of atomic force microsc...
متن کاملCellular secretion studied by force microscopy
Using the optical microscope, real adventures in cellular research began in earnest in the latter half of the nineteenth century. With the development of the electron microscope, ultramicroscopy, and improved cell staining techniques, significant advances were made in defining intracellular structures at the nanometer level. The invention of force microscopy, the atomic force microscope (AFM) i...
متن کاملMicrostructural and mechanical differences between digested collagen-fibrin co-gels and pure collagen and fibrin gels.
Collagen and fibrin are important extracellular matrix (ECM) components in the body, providing structural integrity to various tissues. These biopolymers are also common scaffolds used in tissue engineering. This study investigated how co-gelation of collagen and fibrin affected the properties of each individual protein network. Collagen-fibrin co-gels were cast and subsequently digested using ...
متن کاملAtomic Force Microscopy Application in Biological Research: A Review Study
Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...
متن کاملModeling of fibrin gels based on confocal microscopy and light-scattering data.
Fibrin gels are biological networks that play a fundamental role in blood coagulation and other patho/physiological processes, such as thrombosis and cancer. Electron and confocal microscopies show a collection of fibers that are relatively monodisperse in diameter, not uniformly distributed, and connected at nodal points with a branching order of ∼3-4. Although in the confocal images the hydra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2013
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2012.11.1211